NMR of Quadrupolar Nuclei in Solid Materials
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title NMR of Quadrupolar Nuclei in Solid Materials

English

The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI.

Over the past 20 years technical developments in superconducting magnet technology and instrumentation have increased the potential of NMR spectroscopy so that it is now possible to study a wide range of solid materials. In addition, one can probe the nuclear environments of many other additional atoms that possess the property of spin. In particular, it is possible to carry out NMR experiments on isotopes that have nuclear spin greater that ½ (i.e.  quadrupolar nuclei). Since more that two-thirds of all NMR active isotopes are quadrupolar nuclei, applications of NMR spectroscopy with quadrupolar nuclei are increasing rapidly.

The purpose of this handbook is to provide under a single cover the fundamental principles, techniques and applications of quadrupolar NMR as it pertains to solid materials. Each chapter has been prepared by an expert who has made significant contributions to out understanding and appreciation of the importance of NMR studies of quadrupolar nuclei in solids. The text is divided into three sections: The first provides the reader with the background necessary to appreciate the challenges in acquiring and interpreting NMR spectra of quadrupolar neclei in solids. The second presents cutting-edge techniques and methodology for employing these techniques to investigate quadrupolar nuclei in solids. The final section explores applications of solid-state NMR studies of solids ranging from investigations of dynamics, characterizations of biological samples, organic and inorganic materials, porous materials, glasses, catalysts, semiconductors and high-temperature superconductors.

About EMR Handbooks / eMagRes Handbooks 

The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks  are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry.

Have the content of this Handbook and the complete content of eMagRes at your fingertips!
Visit: www.wileyonlinelibrary.com/ref/eMagRes

View other eMagRes publications here

English

Roderick E. Wasylishen, Canada Research Chair in Physical Chemistry, Department of Chemistry, Edmonton, Alberta, Canada.

Sharon E. Ashbrook, Reader, School of Chemistry, University of St Andrews, UK.

Stephen Wimperis, Professor, Department of Chemistry, Faculty of Physical Sciences, University of Glasgow, UK.

English

Contributors ix

Series Preface xiii

Volume Preface xv

Part A Basic Principles

1 Quadrupolar Interactions
Pascal P. Man

2 Quadrupolar Nuclei in Solids
Alexander J. Vega

3 Quadrupolar Coupling: An Introduction and Crystallographic Aspects
Sharon E. Ashbrook, Stephen Wimperis

4 Quadrupolar Nuclei in Solids: Influence of Different Interactions on Spectra
David L. Bryce, Roderick E. Wasylishen

Part B Advanced Techniques

5 Acquisition of Wideline Solid-State NMR Spectra of Quadrupolar Nuclei
Robert W. Schurko

6 Sensitivity and Resolution Enhancement of Half-Integer Quadrupolar Nuclei in Solid-State NMR
Thomas T. Nakashima, Roderick E. Wasylishen

7 Quadrupolar Nutation Spectroscopy
Arno P. M. Kentgens

8 Dynamic Angle Spinning
Philip J. Grandinetti

9 Double Rotation (DOR) NMR
Ray Dupree

10 MQMAS NMR: Experimental Strategies
Jean-Paul Amoureux, Marek Pruski

11 STMAS NMR: Experimental Advances
Sharon E. Ashbrook, Stephen Wimperis

12 Correlation Experiments Involving Half-Integer Quadrupolar Nuclei
Michael Deschamps, Dominique Massiot

13 Computing Electric Field Gradient Tensors
Josef W. Zwanziger

Part C. Applications

14 Quadrupolar NMR to Investigate Dynamics in Solid Materials
Luke A. O’Dell, Christopher I. Ratcliffe

15 Alkali Metal NMR of Biological Molecules
Gang Wu

16 Nitrogen-14 NMR Studies of Biological Systems
Luminita Duma

17 Oxygen-17 NMR Studies of Organic and Biological Molecules
Gang Wu

18 Oxygen-17 NMR of Inorganic Materials
Sharon E. Ashbrook, Mark E. Smith

19 Chlorine, Bromine and Iodine Solid-State NMR
David L. Bryce, Cory M. Widdifield, Rebecca P. Chapman, Robert J. Attrell

20 Quadrupolar NMR of Ionic Conductors, Batteries, and other Energy-Related Materials
Frédéric Blanc, Leigh Spencer, Gillian R. Goward

21 Quadrupolar NMR of Nanoporous Materials
Mohamed Haouas, Charlotte Martineau, Francis Taulelle

22 Quadrupolar NMR in the Earth Sciences
Jonathan F. Stebbins

23 Quadrupolar NMR of Superconductors
Nicholas J. Curro

24 Quadrupolar NMR of Semiconductors
James P. Yesinowski

25 Quadrupolar NMR of Metal Nuclides in Biological Materials
Tatyana Polenova, Andrew S. Lipton, Paul D. Ellis

26 Nuclear Waste Glasses: Insights from Solid-State NMR
Scott Kroeker

27 Quadrupolar Metal NMR of Oxide Materials Including Catalysts
Olga B. Lapina, Victor V. Terskikh

28 Quadrupolar NMR of Intermetallic Compounds
Frank Haarmann

Index

loading