UWB - Theory and Applications
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title UWB - Theory and Applications

English

Over the past 20 years UWB has been used for radar, sensing, military communications and niche applications. However, since the FCC ruling in 2002, which allowed the commercial operation of UWB for data communications, UWB has changed dramatically.

Implementation oriented, this volume explores the fundamentals of UWB technology with particular emphasis on impulse radio (IR) techniques. It explains the key physical layer aspects of UWB technology, especially in communications and in control applications, and examines the multiple access (MAC) issues which are emerging as a hot area for practical UWB systems.

  • Offers practical information about implementation
  • Addresses issues of modulation possibilities, appropriate circuits for UWB, an example circuit design, MAC protocol issues and use of UWB for positioning applications
  • Includes a literature survey examining books, articles and conference papers presenting the basic features of UWB technology and current systems
  • Features a patent database search providing a historical perspective to the state-of-the-art technology
UWB Theory and Applications will be indispensable to researchers interested in the practical issues of UWB technology and realistic assumptions of UWB, as well as engineers interested in implementing UWB devices.

English


Acknowledgements xv

Abbreviations xvii

1 Introduction 1

1.1 Introduction 1

1.1.1 Scope of this Book 2

1.2 UWB Basics 2

1.2.1 Advantages of UWB 3

1.3 Regulatory Bodies 4

1.3.1 UWB Regulation in the USA 4

1.3.2 UWB Regulations in Europe 5

1.3.2.1 IEEE 802.15.3a 7

1.3.2.2 IEEE 802.15.4a 7

1.4 Conclusions 7

2 UWB Channel Models 9

2.1 Introduction 9

2.2 Channel Measurement Techniques 9

2.2.1 Frequency Domain Channel Sounding 10

2.2.1.1 Signal Analysis Using IFFT 11

2.2.1.2 Hermitian Signal Processing 11

2.2.1.3 Conjugate Approach 12

2.2.2 Calibration and Verification 13

2.2.3 Measurement Experimental Set-up 15

2.2.3.1 Modified Frequency Domain Sounding System 15

2.2.4 Time Domain Channel Sounding 19

2.2.4.1 Impulse Sounding 19

2.2.4.2 Direct Sequence Spread Spectrum Sounding 20

2.3 UWB Radio Channel Models 21

2.3.1 Modified Saleh–Valenzuela Model 23

2.3.2 Other Multipath Models 25

2.4 Path Loss Models 33

2.5 Conclusions 37

3 Modulation Schemes 39

3.1 Introduction 39

3.2 Impulse Radio Schemes 40

3.2.1 Impulse Radio UWB 40

3.2.2 Fast Stepped Frequency Chirps 44

3.3 Multi-Carrier Schemes 45

3.3.1 Multi-carrier Spread Spectrum Schemes 45

3.3.2 Multiband UWB 47

3.4 Data Modulation 47

3.4.1 Pulse Amplitude Modulation 48

3.4.2 On–Off Keying 48

3.4.3 Pulse Position Modulation 49

3.4.4 Pulse Shape Modulation 51

3.4.5 Theoretical Bounds 53

3.5 Spectrum ‘Spreading’ 54

3.5.1 TH-UWB 55

3.5.2 Data Modulation with Time Hopping 57

3.5.3 Multiple Access with TH-UWB 60

3.5.4 Direct Sequence UWB 61

3.5.4.1 Data Modulation with DS-UWB 61

3.5.5 Comparison of TH and DS BPAM UWB 62

3.6 Conclusions 65

4 Receiver Structures 67

4.1 Introduction 67

4.2 Rake Receiver 68

4.2.1 Rake Receiver Types 68

4.2.2 Detection Techniques 71

4.3 Synchronization in UWB Systems 75

4.3.1 Basics 75

4.3.1.1 Synchronization Schemes 76

4.3.2 Performance Measures 78

4.3.2.1 Performance of CLPDI 80

4.3.2.2 AWGN Channel Performance 80

4.3.2.3 Performance in Saleh–Valenzuela Channels 82

4.4 Conclusions 85

5 Integrated Circuit Topologies 87

5.1 Introduction 87

5.2 Ultra Wideband Basic Architectures 88

5.3 Review of Existing UWB Technologies 90

5.3.1 Time Domain Corporation: PulsOn Technology 91

5.3.2 Time Domain Corporation: Sub-Carrier Technology 92

5.3.3 MultiSpectral Solutions, Inc. 92

5.3.4 XtremeSpectrum Inc.: Trinity 94

5.3.4.1 Pulse Generation by Avalanche Transistor 95

5.3.5 Coplanar Waveguides 95

5.4 Integrated Circuit Topologies 97

5.4.1 Source Coupled Pair 98

5.4.2 The Gilbert Multiplier 102

5.4.3 Analogue Addition/Subtraction 103

5.4.4 Integrator 105

5.4.5 Current Source 107

5.5 IC Processes 107

5.6 Example Implementation 109

5.6.1 Transceiver 110

5.6.2 Pulse Generator 111

5.6.3 The Analogue Correlator 115

5.6.4 Timing Circuit 116

5.7 Simulation Results 117

5.7.1 Transmitter 118

5.7.2 Receiver 124

5.8 Conclusions 126

6 UWB Antennas 129

6.1 Introduction 129

6.2 UWB Antenna Characteristics 129

6.3 Antenna Types 131

6.3.1 General Requirements 131

6.3.1.1 Base Station Antenna 132

6.3.1.2 Portable Antenna 132

6.3.2 TEM Horn 132

6.3.3 TEM Horn Variants 133

6.3.4 Impulse Radiating Antenna 133

6.3.5 Folded-horn Antenna 133

6.3.6 Dipoles and Monopoles 134

6.3.7 Loop Antennas 135

6.3.8 Antenna Arrays 135

6.4 Simulation Techniques 136

6.4.1 Finite-Element Method 136

6.4.1.1 Method of Moments 136

6.4.1.2 Finite-Difference Time-Domain 136

6.5 Simulation examples 137

6.5.1 Perfectly Conducting Dipole 137

6.5.2 Capacitively Loaded Dipole 140

6.5.3 Resistively Loaded Dipole 140

6.5.4 Conical Dipole 141

6.5.5 Log-periodic Dipole Array 142

6.5.6 TEM Horn 143

6.6 Measured examples 144

6.6.1 Measurement Techniques 144

6.6.1.1 Frequency-domain Measurements 144

6.6.1.2 Time-domain Measurements 147

6.6.2 TEM Horn 148

6.6.3 Small Antennas 150

6.7 Conclusions 156

7 Medium Access Control 157

7.1 Introduction 157

7.2 Multiple Access in UWB Systems 158

7.2.1 MAC Objectives 158

7.2.1.1 Coexistence 158

7.2.1.2 Interoperability 158

7.2.1.3 Positioning/Tracking Support 159

7.2.2 Structure of the UWB Signal 159

7.2.3 Modulation and Multiple Access 160

7.2.4 Multiuser System Capacity 161

7.3 Medium Access Control for Ultra-Wideband 163

7.3.1 Constraints and Implications of UWB Technologies on MAC Design 164

7.3.2 Resource Allocation in UWB Systems 166

7.4 IEEE 802.15.3 MAC 167

7.4.1 Introduction 167

7.4.2 Applications 168

7.4.3 Main Features 169

7.4.3.1 UWB Considerations 172

7.5 Conclusions 173

8 Positioning 175

8.1 Introduction 175

8.2 Positioning Techniques 176

8.2.1 Time-based Positioning 176

8.2.2 Overview of Position Estimation Techniques 176

8.2.3 Direct Calculation Method 177

8.2.4 Optimization Based Methods 180

8.2.4.1 Objective Function 180

8.2.4.2 Gauss–Newton Method 180

8.2.4.3 Quasi-Newton Method 181

8.2.5 Simulation Results 182

8.3 Delay Estimation Techniques 185

8.3.1 General Approaches 186

8.3.2 Inter-path Cancellation 187

8.4 NLOS Conditions 188

8.4.1 Sources of Uncertainty 188

8.4.2 Delay Through Walls 189

8.5 Metrics for Positioning 190

8.5.1 Identifying NLOS Channels 191

8.5.1.1 Use of Confidence Metrics 194

8.6 Conclusions 196

Appendices 197

References and Bibliography 209

Index 217

loading