Generalized, Linear, and Mixed Models
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title Generalized, Linear, and Mixed Models


CHARLES E. MCCULLOCH, PhD, is Professor of Biostatistics at the University of California, San Francisco. He is the author of numerous scientific publications on biometrics and biological statistics and a coauthor (with Shayle Searle and George Casella) of Variance Components (Wiley).

SHAYLE R. SEARLE, PhD, is Professor Emeritus of Biometry at Cornell University. He is the author of Linear Models, Linear Models for Unbalanced Data, and Matrix Algebra Useful for Statistics, all from Wiley.




One-Way Classifications.

Single-Predictor Regression.

Linear Models (LMs).

Generalized Linear Models (GLMs).

Linear Mixed Models (LMMs).

Longitudinal Data.




Nonlinear Models.

Appendix M: Some Matrix Results.

Appendix S: Some Statistical Results.




"I strongly recommend…[it] for inclusion in math and statistics libraries and in the personal libraries of professional statisticians." (Journal of the American Statistical Association, December 2006)

"…well written and suitable to be a textbook…I enjoyed reading this book and recommend it highly to statisticians." (Journal of Statistical Computation and Simulation, January 2006)

"This text is to be highly recommended as one that provides a modern perspective on fitting models to data." (Short Book Reviews, Vol. 21, No. 2, August 2001)

"For graduate students and?statisticians, McCulloch and Searle begin by reviewing the basics of linear models and linear mixed models..." (SciTech Book News, Vol. 25, No. 4, December 2001)

"...a very good reference book." (Zentralblatt MATH, Vol. 964, 2001/14)

"...another fine contribution to the statistics literature from these respected authors..." (Technometrics, Vol. 45, No. 1, February 2003)