Nanostructured Polymer Membranes: Volume 1, Processing and Characterization
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title Nanostructured Polymer Membranes: Volume 1, Processing and Characterization

English

This book is intended to serve as a "one-stop" reference resource for important research accomplishments in the area of nanostructured polymer membranes and their processing and characterizations. It will be a very valuable reference source for university and college faculties, professionals, post-doctoral research fellows, senior graduate students, and researchers from R&D laboratories working in the area of polymer nanobased membranes. The various chapters are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe and comprise an up-to-date record on the major findings and observations in the field.

English

Visakh P.M. is working as post doc. researcher at Tomsk Polytechnic University, Russia. He obtained his PhD, MPhil and MSc degrees from the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. He has edited 15 books for a variety of international publishers and has been a visiting researcher in many countries since 2011. His research interests include polymer nanocomposites, bio-nanocomposites and rubber based nanocomposites, fire retardant polymers, liquid crystalline polymers and silicon sensors.

Olga Nazarenko obtained her PhD in Technical Sciences from Tomsk Polytechnic University, Russia where she is now a Professor in the Ecology and Basic Safety Department. In 2007 she obtained her DSc. in Processes and Apparatus of Chemical Technology. She has 170 publications, 3 books and 8 textbooks and 7 patents to her credit.

English

Preface xv

1 Processing and Characterizations: State-of-the-Art and New Challenges 1
Visakh. P. M.

1.1 Membrane: Technology and Chemistry 1

1.2 Characterization of Membranes 3

1.3 Ceramic and Inorganic Polymer Membranes: Preparation, Characterization and Applications 4

1.4 Supramolecular Membranes: Synthesis and Characterizations 5

1.5 Organic Membranes and Polymers to Remove Pollutants 7

1.6 Membranes for CO2 Separation 8

1.7 Polymer Nanomembranes 9

1.8 Liquid Membranes 11

1.9 Recent Progress in Separation Technology Based on Ionic Liquid Membranes 12

1.10 Membrane Distillation 13

1.11 Alginate-based Films and Membranes: Preparation, Characterization and Applications 14

References 15

2 Membrane Technology and Chemistry 27
Manuel Palencia, Alexander Córdoba and Myleidi Vera

2.1 Introduction 27

2.2 Membrane Technology: Fundamental Concepts 28

2.3 Separation Mechanisms 33

2.4 Chemical Nature of Membrane 41

2.5 Surface Treatment of Membranes 42

2.6 Conclusions 48

References 48

3 Characterization of Membranes 55
Derya Y. Koseoglu-Imer, Ismail Koyuncu, Reyhan Sengur-Tasdemir, Serkan Guclu, Recep Kaya, Mehmet Emin Pasaoglu and Turker Turken

3.1 Introduction 56

3.2 Physical Methods for Characterizing Pore Size of Membrane 56

3.3 Membrane Chemical Structure 67

3.4 Conclusions 85

References 85

4 Ceramic and Inorganic Polymer Membranes: Preparation, Characterization and Applications 89
Chiam-Wen Liew and S. Ramesh

4.1 Introduction 90

4.2 Recent Developments in Filler-doped Polymer Electrolytes 95

4.3 Methodology 105

4.4 Results and Discussion 109

4.5 Conclusions 127

Acknowledgment 128

References 128

5 Supramolecular Membranes: Synthesis and Characterizations 137
Cher Hon Lau, Matthew Hill and Kristina Konstas

5.1 Overview 138

5.2 Supramolecular Materials 138

5.3 Supramolecular Membranes 157

5.4 Membrane Fabrication Using Supramolecular Chemistry 170

5.5 Conclusions 184

References 186

6 Organic Membranes and Polymers for the Removal of Pollutants 203
Bernabé L. Rivas, Julio Sánchez and Manuel Palencia

6.1 Membranes: Fundamental Aspects 204

6.2 Liquid-phase Polymer-based Retention (LPR) 212

6.3 Applications for Removal of Specific Pollutants 216

6.4 Future Perspectives 228

6.5 Conclusions 228

Acknowledgments 228

References 228

7 Membranes for CO2 Separation 237
Abedalkhader Alkhouzaam, Majeda Khraisheh, Mert Atilhan, Shaheen A. Al-Muhtaseb and Syed Javaid Zaidi

7.1 Introduction 238

7.2 Fundamentals of Membrane Gas Separation 239

7.3 Polymeric Membranes for CO2 Separation 245

7.4 Mixed Matrix Membranes 258

7.5 Supported Ionic Liquid Membranes (SILMs) for CO2 Separation 263

7.6 Conclusion 278

7.7 Overall Comparison and Future Outlook 279

Abbreviations 282

References 285

8 Polymer Nanomembranes 293
Giuseppe Firpo and Ugo Valbusa

8.1 Introduction 293

8.2 Materials 294

8.3 Nanomembrane Fabrication 298

8.4 Characterization 304

8.5 Applications 310

References 316

9 Liquid Membranes 329
Jiangnan Shen, Lijing Zhu, Lixin Xue and Congjie Gao

9.1 Introduction 329

9.2 Most Recent Developments 330

9.3 Liquid Membranes Based Separation Processes 330

9.4 Conclusion 379

References 379

10 Recent Progress in Separation Technology Based on Ionic Liquid Membranes 391
M.J. Salar-García, V.M. Ortiz-Martínez, A. Pérez de los Ríos and F.J. Hernández-Fernández

10.1 Introduction 392

10.2 Ionic Liquid Properties 393

10.3 Bulk Ionic Liquid Membranes 395

10.4 Emulsified Ionic Liquid Membranes 397

10.5 Immobilized Ionic Liquid Membranes 400

10.6 Green Aspect of Ionic Liquids 410

10.7 Conclusions 411

Acknowledgments 411

References 412

11 Membrane Distillation 419
Mohammadali Baghbanzadeh, Christopher Q. Lan, Dipak Rana and Takeshi Matsuura

11.1 Introduction 419

11.2 Applications of Membrane Distillation Technology 420

11.3 Different Kinds of Membrane Distillation Configurations 422

11.4 Distillation Membranes 432

11.5 Transport Phenomena in MD 439

11.6 Conclusion 450

References 450

12 Alginate-based Films and Membranes: Preparation, Characterization and Applications 457
Jiwei Li and Jinmei He

12.1 Introduction 457

12.2 Recent Development 459

12.3 Applications 468

12.4 Conclusion 473

References 474

Index 491

loading