Process Analytical Technology 2e - SpectroscopicTools and Implementation Strategies for theChemical and Pharmaceutical Industries
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title Process Analytical Technology 2e - SpectroscopicTools and Implementation Strategies for theChemical and Pharmaceutical Industries


Process Analytical Technology explores the concepts of PAT and its application in the chemical and pharmaceutical industry from the point of view of the analytical chemist. In this new edition all of the original chapters have been updated and revised, and new chapters covering the important topics of sampling, NMR, fluorescence, and acoustic chemometrics have been added.

Coverage includes:

  • Implementation of Process Analytical Technologies
  • UV-Visible Spectroscopy for On-line Analysis
  • Infrared Spectroscopy for Process Analytical Applications
  • Process Raman Spectroscopy
  • Process NMR Spectrscopy: Technology and On-line Applications
  • Fluorescent Sensing and Process Analytical Applications
  • Chemometrics in Process Analytical Technology (PAT)
  • On-Line PAT Applications of Spectroscopy in the Pharmaceutical Industry
  • Future Trends for PAT for Increased Process Understanding and Growing Applications in Biomanufacturing
  • NIR Chemical Imaging

This volume is an important starting point for anyone wanting to implement PAT and is intended not only to assist a newcomer to the field but also to provide up-to-date information for those who practice process analytical chemistry and PAT.

It is relevant for chemists, chemical and process engineers, and analytical chemists working on process development, scale-up and production in the pharmaceutical, fine and specialty chemicals industries, as well as for academic chemistry, chemical engineering, chemometrics and pharmaceutical science research groups focussing on PAT.

Review from the First Edition

“The book provides an excellent first port of call for anyone seeking material and discussions to understand the area better. It deserves to be found in every library that serves those who are active in the field of Process Analytical Technology.”—Current Engineering Practice


Katherine A. Bakeev is Principal Scientist with GlaxoSmithKline in King of Prussia, PA where she works in the Process Analytics and Chemometrics group supporting chemical development. She has twelve years of industrial experience including work in process analytical chemistry with ISP, and as a product specialist for Foss NIRSystems. She holds a PhD in Polymer Science and Engineering from the University of Massachusetts in Amherst, and a Masters in Technology Management from Stevens Institute of Technology. She has given numerous presentations on the use of near-infrared spectroscopy (NIR), and in 2007 received the Coblentz Society Craver Award for her work in NIR and chemometrics.


Preface to the Second Edition.

List of Contributors.

List of Abbreviations.

1 Overview of Process Analysis and PAT (Jason E. Dickens).

1.1 Introduction.

1.2 Execution of Process Analysis Projects.

1.3 Process Instrumentation.

1.4 Conclusions.

1.5 Glossary of Acronyms and Terms.


2 Implementation of Process Analytical Technologies (Robert Guenard and Gert Thurau).

2.1 Introduction to Implementation of Process Analytical Technologies (PAT) in the Industrial Setting.

2.2 Generalized Process Analytics Work Process.

2.3 Considerations for PAT Implementation in the Pharmaceutical Industry.

2.4 Conclusions.


3 Process Sampling: Theory of Sampling – the Missing Link in Process Analytical Technologies (PAT) (Kim H. Esbensen and Peter Paasch-Mortensen).

3.1 Introduction.

3.2 Theory of Sampling – Introduction.

3.3 Mass Reduction as a Specific Sampling Procedure.

3.4 Fundamental Sampling Principle.

3.5 Sampling – a Very Practical Issue.

3.6 Reactors and Vessels – Identical Process Sampling Issues.

3.7 Heterogeneity Characterization of 1-D lots: Variography.

3.8 Data Quality – New Insight from the TOS.

3.9 Validation in Chemometrics and PAT.

3.10 Summary.


4 UV-visible Spectroscopy for On-line Analysis (Marcel A. Liauw, Lewis C. Baylor and Patrick E. O’Rourke).

4.1 Introduction.

4.2 Theory.

4.3 Instrumentation.

4.4 Sample Interface.

4.5 Implementation.

4.6 Applications.

4.7 Detailed Application Notes.

4.8 Conclusion.


5 Near-infrared Spectroscopy for Process Analytical Technology: Theory, Technology and Implementation (Michael B. Simpson).

5.1 Introduction.

5.2 Theory of Near-infrared Spectroscopy.

5.3 Analyser Technologies in the Near-infrared.

5.4 The Sampling Interface.

5.5 Practical Examples of Near-infrared Analytical Applications.

5.6 Conclusion.


6 Infrared Spectroscopy for Process Analytical Applications (John P. Coates).

6.1 Introduction.

6.2 Practical Aspects of IR Spectroscopy.

6.3 Instrumentation Design and Technology.

6.4 Process IR Instrumentation.

6.5 Applications of Process IR Analyzers.

6.6 Process IR Analyzers: a Review.

6.7 Trends and Directions.


7 Raman Spectroscopy (Nancy L. Jestel).

7.1 Attractive Features of Raman Spectroscopy.

7.2 Potential Issues with Raman Spectroscopy.

7.3 Fundamentals of Raman Spectroscopy.

7.4 Raman Instrumentation.

7.5 Quantitative Raman.

7.6 Applications.

7.7 Current State of Process Raman Spectroscopy.


8 Near-infrared Chemical Imaging for Product and Process Understanding (E. Neil Lewis, Joseph W. Schoppelrei, Lisa Makein, Linda H. Kidder and Eunah Lee).

8.1 The PAT Initiative.

8.2 The Role of Near-infrared Chemical Imaging (NIR-CI) in the Pharmaceutical Industry.

8.3 Evolution of NIR Imaging Instrumentation.

8.4 Chemical Imaging Principles.

8.5 PAT Applications.

8.6 Processing Case Study: Estimating ‘Abundance’ of Sample Components.

8.7 Processing Case Study: Determining Blend Homogeneity Through Statistical Analysis.

8.8 Final Thoughts.


9 Acoustic Chemometric Monitoring of Industrial Production Processes (Maths Halstensen and Kim H. Esbensen).

9.1 What is Acoustic Chemometrics?

9.2 How Acoustic Chemometrics Works.

9.3 Industrial Production Process Monitoring.

9.4 Available On-line Acoustic Chemometric Equipment.

9.5 Discussion.

9.6 Conclusions.


10 Process NMR Spectroscopy: Technology and On-line Applications (John C. Edwards and Paul J. Giammatteo).

10.1 Introduction.

10.2 NMR Spectroscopy Overview.

10.3 Process NMR Instrumentation.

10.4 Postprocessing Methodologies for NMR Data.

10.5 Advantages and Limitations of NMR as a Process Analytical Technology.

10.6 On-line and At-line Applications.

10.7 Current Development and Applications.

10.8 Conclusions.


11 Fluorescent Sensing and Process Analytical Applications (Jason E. Dickens).

11.1 Introduction.

11.2 Luminescence Fundamentals.

11.3 LIF Sensing Fundamentals.

11.4 LIF Sensing Instrumentation.

11.5 Luminescent Detection Risks.

11.6 Process Analytical Technology Applications.

11.7 Conclusions.


12 Chemometrics in Process Analytical Technology (PAT) (Charles E. Miller).

12.1 Introduction.

12.2 Foundations of Chemometrics.

12.3 Chemometric Methods in PAT.

12.4 Overfitting and Model Validation.

12.5 Outliers.

12.6 Calibration Strategies in PAT.

12.7 Sample and Variable Selection in Chemometrics.

12.8 Troubleshooting/Improving an Existing Method.

12.9 Calibration Transfer and Instrument Standardization.

12.10 Chemometric Model Deployment Issues in PAT.

12.11 People Issues.

12.12 The Final Word.


13 On-line PAT Applications of Spectroscopy in the Pharmaceutical Industry (Brandye Smith-Goettler).

13.1 Background.

13.2 Reaction Monitoring.

13.3 Crystallization.

13.4 API Drying.

13.5 Nanomilling.

13.6 Hot-melt Extrusion.

13.7 Granulation.

13.8 Powder Blending.

13.9 Compression.

13.10 Coating.

13.11 Biologics.

13.12 Cleaning Validation.

13.13 Conclusions.


14 NIR Spectroscopy in Pharmaceutical Analysis: Off-line and At-line PAT Applications (Marcelo Blanco Romía and Manel Alcalá Bernárdez).

14.1 Introduction.

14.2 Foundation of Qualitative Method Development.

14.3 Foundation of Quantitative Method Development.

14.4 Method Validation.

14.5 Calibration Transfer.

14.6 Pharmaceutical Applications.

14.7 Conclusions.


15 Near-infrared Spectroscopy (NIR) as a PAT Tool in the Chemical Industry: Added Value and Implementation Challenges (Ann M. Brearley and Susan J. Foulk).

15.1 Introduction.

15.2 Successful Process Analyzer Implementation.

15.3 Example Applications.


16 Future Trends for PAT for Increased Process Understanding and Growing Applications in Biomanufacturing (Katherine A. Bakeev and Jose C. Menezes).

16.1 Introduction.

16.2 Regulatory Guidance and its Impact on PAT.

16.3 Going Beyond Process Analyzers Towards Solutions.

16.4 Emerging Application Areas of PAT.

16.5 New and Emerging Sensor and Control Technologies.

16.6 Advances in Sampling: NeSSI.

16.7 Challenges Ahead.

16.8 Conclusion.




"Overall, this excellent compilation is highly recommended." (Organic Process Research and Development, January 2011)