Electromagnetic Fields in Unconventional Materialsand Structures
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title Electromagnetic Fields in Unconventional Materialsand Structures

English

This book will shape the course of electromagnetics research for decades to come. Fourteen leading researchers from five countries reveal their latest research results in detail and review parallel developments. The topics discussed, though unconventional today, are destined to attract great attention as shrinking device sizes make electromagnetic effects ever more important.

These topics include the rotation of polarization of electric waves by a twisted structure; homogenization of linear bianistotropic composite materials; novel free-space techniques to characterize complex mediums; sculptured thin films; electrodynamic properties of carbon nanotubes; and more.

Electromagnetic Fields in Unconventional Materials and Structures:
* Focuses on geometry in both large and small scales
* Provides a blueprint for electromagnetics research at the turn of the century
* Features new results, comments, and prognostications on 21st century research
* Includes more than 150 illustrations as well as hundreds of charts, tables, and references

English

Onkar N. Singh is the editor of Electromagnetic Fields in Unconventional Materials and Structures, published by Wiley. Akhlesh Lakhtakia is Evan Pugh University Professor and Charles Godfrey Binder Professor of Engineering Science and Mechanics at the Pennsylvania State University. His research focuses on electromagnetic fields in complex materials, such as sculptured thin films, chiral materials, and bianisotropy.

English

Scalar Hertz Potentials for Linear Bianisotropic Mediums (W. Weiglhofer).

Recent Developments in the Homogenization of Linear Bianisotropic Composite Materials (B. Michel).

Novel Free-Space Techniques to Characterize Complex Mediums (G. Borzdov).

A Mini-Review on Isotropic Chiral Mediums (A. Lakhtakia).

Sculptured Thin Films: Conception, Optical Properties, and Applications (V. Venugopal & A. Lakhtakia).

Electrodynamic Properties of Carbon Nanotubes (S. Maksimenko & G. Slepyan).

Numerical Analyses of Optical Propagation and Interaction in Nonlinear Photorefractive Materials (P. Banerjee & J. Jarem).

Some Multilayered and Other Unconventional Lightguides (P. Choudhury & O. Singh).

All-Fiber Guided Wave Components (B. Pal).

Electromagnetic Wave Propagation Through Helical Structures (P. Jain & B. Basu).

Indexes.

English

"In summary, Electromagnetic Fields in Unconventional Materials and Structures is an advanced book, written by experts, that is bound to be useful to serious researchers" (Int. Jnl. of Electronics and Communications, Vol.55, No.5, 2001)
"Congratulations! The book is a pearl. It is like a treasury." (Optik - Int. Jnl. for Light & Electron Optics, Vol.112, No.19, 2001)
loading