Rights Contact Login For More Details
- Wiley
More About This Title Alloy Physics - A Comprehensive Reference
- English
English
deformation, deformation dynamics and ordering kinetics right up to atom jump processes, first principle calculations and simulation techniques. Alongside fundamental topics, such as crystal defects, phase transformations and statistical thermodynamics, the team of international authors treats such hot areas as nano-size effects, interfaces, and spintronics, as well as
technical applications of modern alloys, like data storage and recording, and the possibilities offered by materials design.
- English
English
- English
English
Preface XIX
Foreword XXI
by Robert W. Cahn
Motto XXIII
List of Contributors XXV
1 Introduction 1
Wolfgang Pfeiler
1.1 The Importance of Alloys at the Beginning of the Third Millennium 1
1.2 Historical Development 5
1.2.1 Historical Perspective 5
1.2.2 The Development of Modern Alloy Science 9
1.3 Atom Kinetics 12
1.4 The Structure of this Book 13
References 18
2 Crystal Structure and Chemical Bonding 19
Yuri Grin, Ulrich Schwarz, and Walter Steurer
2.1 Introduction 19
2.2 Factors Governing Formation, Composition and Crystal Structure of Intermetallic Phases 20
2.2.1 Mappings of Crystal Structure Types 21
2.3 Models of Chemical Bonding in Intermetallic Phases 25
2.3.1 Models Based on the Valence (or Total) Electron Numbers 25
2.3.2 Quantum Mechanical Models for Metallic Structures 29
2.3.3 Electronic Closed-Shell Configurations and Two-Center Two-Electron Bonds in Intermetallic Compounds 31
2.4 Structure Types of Intermetallic Compounds 36
2.4.1 Classification of the Crystal Structures of Intermetallic Compounds 37
2.4.2 Crystal Structures Derived from the Closest Packings of Equal Spheres 37
2.4.3 Crystal Structures Derived from the Close Packings of Equal Spheres 40
2.4.4 Crystal Structures Derived from the Packings of the Spheres of Different Sizes 43
2.4.5 Selected Crystal Structures with Complex Structural Patterns 44
2.5 Quasicrystals 48
2.5.1 Introduction 48
2.5.2 Quasiperiodic Structures in Direct and Reciprocal Space 50
2.5.3 Formation and Stability 52
2.5.4 Structures of Decagonal Quasicrystals (DQCs) 53
2.5.5 Structures of Icosahedral Quasicrystals 55
2.6 Outlook 59
References 60
3 Solidification and Grown-in Defects 63
Thierry Duffar
3.1 Introduction: the Solid–Liquid Interface 63
3.1.1 Structure of the Solid–Liquid Interface 63
3.1.2 Kinetics of the Solid–Liquid Interface 65
3.1.3 Chemistry of the Solid–Liquid Interface: the Segregation Problem 67
3.1.4 Temperature of the Solid–Liquid Interface 69
3.2 Solidification Structures 70
3.2.1 The Interface Stability and Cell Periodicity 71
3.2.2 Dendrites 74
3.2.3 Rapid Solidification 86
3.2.4 Eutectic Structures 90
3.3 Defects in Single and Polycrystals 93
3.3.1 Defects in Single Crystals 94
3.3.2 Grain Structure of an Alloy 101
3.3.3 Macro- and Mesosegregation 110
3.4 Outlook 114
References 117
4 Lattice Statics and Lattice Dynamics 119
Véronique Pierron-Bohnes and Tarik Mehaddene
4.1 Introduction: The Binding and Atomic Interaction Energies 119
4.2 Elasticity of Crystalline Lattices 124
4.2.1 Linear Elasticity 125
4.2.2 Elastic Constants 125
4.2.3 Cases of Cubic and Tetragonal Lattices 127
4.2.4 Usual Elastic Moduli 128
4.2.5 Link with Sound Propagation 130
4.3 Lattice Dynamics and Thermal Properties of Alloys 132
4.3.1 Normal Modes of Vibration in the Harmonic Approximation 133
4.4 Beyond the Harmonic Approximation 149
4.4.1 Thermal Expansion 150
4.4.2 Thermal Conductivity 151
4.4.3 Soft Phonon Modes and Structural Phase Transition 153
4.5 Experimental Investigation of the Normal Modes of Vibration 156
4.5.1 Raman Spectroscopy 156
4.5.2 Inelastic Neutron Scattering 157
4.6 Phonon Spectra and Migration Energy 160
4.7 Outlook 165
References 168
5 Point Defects, Atom Jumps, and Diffusion 173
Wolfgang Püschl, Hiroshi Numakura, and Wolfgang Pfeiler
5.1 Point Defects 173
5.1.1 A Brief Overview 173
5.1.2 Point Defects in Pure Metals and Dilute Alloys 187
5.1.3 Point Defects in Ordered Alloys 197
5.2 Defect Migration: Microscopic Diffusion 217
5.2.1 The Single Atom Jump 217
5.2.2 Solid Solutions 222
5.2.3 Atom Migration in Ordered Alloys 238
5.3 Statistical Methods: from Single Jump to Configuration Changes 252
5.3.1 Master Equation Method 253
5.3.2 Continuum Approaches to Microscopic Diffusion and their Interrelationship with Atom Jump Statistics 253
5.3.3 Path Probability Method 255
5.3.4 Monte Carlo Simulation Method 255
5.4 Macroscopic Diffusion 256
5.4.1 Formal Description 256
5.4.2 Phase Transformations as Diffusion Phenomena 263
5.4.3 Enhanced Diffusion Paths 265
5.5 Outlook 272
References 274
6 Dislocations and Mechanical Properties 281
Daniel Caillard
6.1 Introduction 281
6.2 Thermally Activated Mechanisms 283
6.2.1 Introduction to Thermal Activation 283
6.2.2 Interactions with Solute Atoms 285
6.2.3 Forest Mechanism 292
6.2.4 Peierls-Type Friction Forces 293
6.2.5 Cross-Slip in fcc Metals and Alloys 305
6.2.6 Dislocation Climb 309
6.2.7 Conclusions on Thermally Activated Mechanisms 316
6.3 Hardening and Recovery 316
6.3.1 Dislocation Multiplication versus Exhaustion 317
6.3.2 Dislocation–Dislocation Interaction and Internal Stress: the Taylor Law 321
6.3.3 Hardening Stages in fcc Metals and Alloys 323
6.4 Complex Behavior 330
6.4.1 Yield Stress Anomalies 330
6.4.2 Fatigue 333
6.4.3 Strength of Nanocrystalline Alloys and Thin Layers 336
6.4.4 Fracture 338
6.4.5 Quasicrystals 339
6.5 Outlook 342
References 342
7 Phase Equilibria and Phase Transformations 347
Brent Fultz and Jeffrey J. Hoyt
7.1 Alloy Phase Diagrams 347
7.1.1 Solid Solutions 347
7.1.2 Free Energy and the Lever Rule 351
7.1.3 Common Tangent Construction 353
7.1.4 Unmixing and Continuous Solid Solubility Phase Diagrams 354
7.1.5 Eutectic and Peritectic Phase Diagrams 356
7.1.6 More Complex Phase Diagrams 357
7.1.7 Atomic Ordering 359
7.1.8 Beyond Simple Models 362
7.1.9 Entropy of Configurations 363
7.1.10 Principles of Phonon Entropy 365
7.1.11 Trends of Phonon Entropy 367
7.1.12 Phonon Entropy at Elevated Temperatures 369
7.2 Kinetics and the Approach to Equilibrium 371
7.2.1 Suppressed Diffusion in the Solid (Nonequilibrium Compositions) 371
7.2.2 Nucleation Kinetics 373
7.2.3 Suppressed Diffusion in the Liquid (Glasses) 374
7.2.4 Suppressed Diffusion in a Solid Phase (Solid-State Amorphization) 375
7.2.5 Combined Reactions 376
7.2.6 Statistical Kinetics of Phase Transformations 377
7.2.7 Kinetic Pair Approximation 378
7.2.8 Equilibrium State of Order 380
7.2.9 Kinetic Paths 380
7.3 Nucleation and Growth Transformations 382
7.3.1 Definitions 382
7.3.2 Fluctuations and the Critical Nucleus 384
7.3.3 The Nucleation Rate 387
7.3.4 Time-Dependent Nucleation 391
7.3.5 Effect of Elastic Strain 393
7.3.6 Heterogeneous Nucleation 395
7.3.7 The Kolmogorov–Johnson–Mehl–Avrami Growth Equation 397
7.4 Spinodal Decomposition 399
7.4.1 Concentration Fluctuations and the Free Energy of Solution 400
7.4.2 The Diffusion Equation 402
7.4.3 Effects of Elastic Strain Energy 404
7.5 Martensitic Transformations 406
7.5.1 Characteristics of Martensite 406
7.5.2 Massive and Displacive Transformations 411
7.5.3 Bain Strain Mid-Lattice Invariant Shear 412
7.5.4 Martensite Crystallography 413
7.5.5 Nucleation and Dislocation Models of Martensite 415
7.5.6 Soft Mode Transitions, the Clapp Lattice Instability Model 417
7.6 Outlook 418
References 420
8 Kinetics in Nonequilibrium Alloys 423
Pascal Bellon and Georges Martin
8.1 Relaxation of Nonequilibrium Alloys 424
8.1.1 Coherent Precipitation: Nothing but Solid-State Diffusion 425
8.1.2 Cluster Dynamics, Nucleation Theory, Diffusion Equations: Three Tools for Describing Kinetic Pathways 426
8.1.3 Cluster Dynamics 427
8.1.4 Classical Nucleation Theory 432
8.1.5 Kinetics of Concentration Fields 436
8.1.6 Conclusion 438
8.2 Driven Alloys 438
8.2.1 Examples of Driven Alloys 439
8.2.2 Identification of the Relevant Control Parameters: Toward a Dynamical Equilibrium Phase Diagram 450
8.2.3 Theoretical Approaches and Simulation Techniques 454
8.2.4 Self-Organization in Driven Alloys: Role of Length Scales of the External Forcing 468
8.2.5 Practical Applications and Extensions 481
8.3 Outlook 484
References 484
9 Change of Alloy Properties under Dimensional Restrictions 491
Hirotaro Mori and Jung-Goo Lee
9.1 Introduction 491
9.2 Instrumentation for in-situ Observation of Phase Transformation of Nanometer-Sized Alloy Particles 492
9.3 Depression of the Eutectic Temperature and its Relevant Phenomena 494
9.3.1 Atomic Diffusivity in Nanometer-Sized Particles 494
9.3.2 Eutectic Temperature in Nanometer-Sized Alloy Particles 496
9.3.3 Structural Instability 500
9.3.4 Thermodynamic Discussion 503
9.4 Solid/Liquid Two-Phase Microstructure 508
9.4.1 Solid–Liquid Phase Transition 508
9.4.2 Two-Phase Microstructure 514
9.5 Solid Solubility in Nanometer-Sized Alloy Particles 518
9.6 Summary and Future Perspectives 521
References 522
10 Statistical Thermodynamics and Model Calculations 525
Tetsuo Mohri
10.1 Introduction 525
10.2 Statistical Thermodynamics on a Discrete Lattice 527
10.2.1 Description of Atomic Configuration 527
10.2.2 Internal Energy 534
10.2.3 Entropy and Cluster Variation Method 536
10.2.4 Free Energy 542
10.2.5 Relative Stability and Intrinsic Stability 544
10.2.6 Atomistic Kinetics by the Path Probability Method 549
10.3 Statistical Thermodynamics on Continuous Media 552
10.3.1 Ginzburg–Landau Free Energy 552
10.3.2 Diffusion Equation and Time-Dependent Ginzburg–Landau Equation 554
10.3.3 Width of an Interface 557
10.3.4 Interface Velocity 559
10.4 Model Calculations 560
10.4.1 Calculation of a Phase Diagram 561
10.4.2 Microstructural Evolution Calculated by the Phase Field Method 572
10.5 Future Scope and Outlook 580
Appendix: CALPHAD Free Energy 582
References 585
11 Ab-Initio Methods and Applications 589
Stefan Mu¨ller, Walter Wolf, and Raimund Podloucky
11.1 Introduction 589
11.2 Theoretical Background 590
11.2.1 Density Functional Theory 590
11.2.2 Computational Methods 594
11.2.3 Elastic Properties 598
11.2.4 Vibrational Properties 601
11.3 Applications 606
11.3.1 Structural and Phase Stability 606
11.3.2 Point Defects 612
11.3.3 Diffusion Processes 616
11.3.4 Impurity Effects on Grain Boundary Cohesion 622
11.3.5 Toward Multiscale Modeling: Cluster Expansion 625
11.3.6 Search for Ground-State Structures 639
11.3.7 Ordering and Decomposition Phenomena in Binary Alloys 641
11.4 Outlook 648
References 649
12 Simulation Techniques 653
Ferdinand Haider, Rafal Kozubski, and T.A. Abinandanan
12.1 Introduction 653
12.2 Molecular Dynamics Simulations 654
12.2.1 Basic Ideas 654
12.2.2 Atomic Interaction, Potential Models 656
12.2.3 Practical Considerations 659
12.2.4 Different Thermodynamic Ensembles: Thermostats, Barostats 659
12.2.5 Implementation of MD Algorithms 661
12.2.6 Practical Aspects: Time Steps 662
12.2.7 Evaluation of Data: Use of Correlation Functions 662
12.2.8 Applications to Alloys, Alloy Dynamics, and Alloy Kinetics 664
12.3 Monte Carlo Simulations 667
12.3.1 Foundations of Stochastic Processes – Markov Chains and the Master Equation 667
12.3.2 The Idea of Sampling 668
12.3.3 Markov Chains as a Tool for Importance Sampling 670
12.3.4 General Applicability 671
12.3.5 Limitations: Finite-Size Effects and Boundary Conditions 674
12.3.6 Numerical Implementation of MC 675
12.3.7 Applications to Alloys 678
12.3.8 Practical Aspects 681
12.3.9 Review of Current Applications in Studies of Alloys 682
12.3.10 Going beyond the Ising Model and Rigid-Lattice Simulations 685
12.3.11 Monte Carlo Simulations in View of other Techniques of Alloy Modeling 686
12.4 Phase Field Models 686
12.4.1 Introduction 686
12.4.2 Cahn–Hilliard Model 687
12.4.3 Numerical Implementation 691
12.4.4 Application: Spinodal Decomposition 693
12.4.5 Cahn–Allen Model 694
12.4.6 Generalized Phase Field Models 696
12.4.7 Other Topics 700
12.5 Outlook 702
Appendix 702
References 703
13 High-Resolution Experimental Methods 707
13.1 High-Resolution Scattering Methods and Time-Resolved Diffraction 707
Bogdan Sepiol and Karl F. Ludwig
13.1.1 Introduction: Theoretical Concepts, X-Ray, and Neutron Scattering Methods 707
13.1.2 Magnetic Scattering 710
13.1.3 Spectroscopy 721
13.1.4 Time-Resolved Scattering 749
13.1.5 Diffuse Scattering from Disordered Alloys 756
13.1.6 Surface Scattering – Atomic Segregation and Ordering near Surfaces 762
13.1.7 Scattering from Quasicrystals 763
13.1.8 Outlook 764
References 765
13.2 High-Resolution Microscopy 774
Guido Schmitz and James M. Howe
13.2.1 Surface Analysis by Scanning Probe Microscopy 775
13.2.2 High-Resolution Transmission Electron Microscopy and Related Techniques 791
13.2.3 Local Analysis by Atom Probe Tomography 817
13.2.4 Future Development and Outlook 853
References 857
14 Materials and Process Design 861
14.1 Soft and Hard Magnets 861
Roland Grössinger
14.1.1 What do ‘‘Soft’’ and ‘‘Hard’’ Magnetic Mean? 861
14.1.2 Soft Magnetic Materials 865
14.1.3 Hard Magnetic Materials 873
14.1.4 Outlook 883
References 883
14.2 Invar Alloys 885
Peter Mohn
14.2.1 Introduction and General Remarks 885
14.2.2 Spontaneous Volume Magnetostriction 888
14.2.3 The Modeling of Invar Properties 889
14.2.4 A Microscopic Model 893
14.2.5 Outlook 894
References 895
14.3 Magnetic Media 895
Laurent Ranno
14.3.1 Data Storage 895
14.3.2 Magnetic Recording Media 905
14.3.3 Outlook 909
Further Reading 910
14.4 Spin Electronics (Spintronics) 911
Laurent Ranno
14.4.1 Electrical Transport in Conductors 911
14.4.2 Magnetoresistance 915
14.4.3 Outlook 921
Further Reading 921
14.5 Phase-Change Media 921
Takeo Ohta
14.5.1 Electrically and Optically Induced Writing and Erasing Processes 921
14.5.2 Phase-Change Dynamic Model 925
14.5.3 Alternative Functions 933
14.5.4 Outlook 938
References 938
14.6 Superconductors 939
Harald W. Weber
14.6.1 Fundamentals 939
14.6.2 Superconducting Materials 944
14.6.3 Technical Superconductors 946
14.6.4 Applications 952
Further Reading 953
Index 955