Multiscales Geomechanics: From Soil to Engineering Projects
Buy Rights Online Buy Rights

Rights Contact Login For More Details

  • Wiley

More About This Title Multiscales Geomechanics: From Soil to Engineering Projects

English

This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927-2006), it can be of great use and interest to researchers and engineers alike.
A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez's life-long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these scientific advancements into engineering practices.
He innovated a multiscale approach of passing from the discontinuous medium formed by individual grains to an equivalent continuous medium. The first part of the book examines the behavior of soils at the level of their different constituents and at the level of their interaction. Behavior is then treated at the scale of the soil sample.
The second part deals with soil mechanics from the vantage point of the construction project. It highlights Biarez's insightful adoption of the Finite Element Codes and illustrates, through numerous construction examples, his methodology and approach based on the general framework he constructed for soil behavior, constantly enriched by comparing in situ measurements with calculated responses of geostructures.

English

Pierre-Yves Hicher is Professor of Civil Engineering at Ecole Centrale de Nantes in France, specializing in soil behavior and constitutive modeling. His publications are numerous and well-known, particularly an early work Elementary Mechanics of Soil Behaviour (1994) co-authored with Jean Biarez.

English

Preface  xi

Acknowledgments  xv

Chapter 1. Jean Biarez: His Life and Work  1
Jean-Louis BORDES, Jean-Louis FAVRE and Daniel GRIMM

1.1. Early years and arrival in Grenoble  1

1.2. From Grenoble to Paris  4

1.3. The major research interests of Jean Biarez  8

1.4. Research and teaching   9

1.5. Conclusion  13

Chapter 2. From Particle to Material Behavior: the Paths Chartered by Jean Biarez 15
Bernard CAMBOU and Cécile NOUGUIER-LEHON

2.1. Introduction 15

2.2. The available tools, the variables analyzed and limits of the proposed analyses 16

2.3. Analysis of geometric anisotropy  18

2.4. Analysis of the distribution of contact forces in a granular material 21

2.5. Analysis of local arrays  24

2.6. Particle breakage  27

2.7. Conclusion  32

2.8. Bibliography  32

Chapter 3. Granular Materials in Civil Engineering: Recent Advances in the Physics of Their Mechanical Behavior and Applications to Engineering Works        35
Etienne FROSSARD

3.1. Behavior resulting from energy dissipation by friction      37

3.1.1. Introduction 37

3.1.2. Fundamentals        38

3.1.3. Main practical consequences 43

3.1.4. Conclusions   52

3.2. Influence of grain breakage on the behavior of granular materials 53

3.2.1. Introduction to the grain breakage phenomenon      53

3.2.2. Scale effect in shear strength 56

3.3. Practical applications to construction design         63

3.3.1. A new method for rational assessment of rockfill shear strength envelope       63

3.3.2. Incidence of scale effect on rockfill slope stability      65

3.3.3. Scale effects on deformation features          70

3.4. Conclusions 78

3.5. Bibliography  79

Chapter 4. Waste Rock Behavior at High Pressures: Dimensioning High Waste Rock Dumps   83
Edgar BARD, María EUGENIA ANABALÓN and José CAMPAÑA

4.1. Introduction 83

4.2. Development of new laboratory equipment for testing coarse materials 84

4.2.1. Triaxial and oedometric equipment at the IDIEM 85

4.3. Mining rock waste       86

4.3.1. In situ grain size distribution 86

4.3.2. Analyzed waste rock      87

4.4. Characterization of mechanical behavior of the waste rock 88

4.4.1. Oedometric tests       88

4.4.2. Triaxial tests   89

4.4.3. Oedometric test results 90

4.4.4. Triaxial test results   94

4.5. Evolution of density  102

4.6. Stability analysis and design considerations         104

4.7. Operation considerations      106

4.7.1. Basal drainage system 106

4.7.2. Water management   107

4.7.3. Foundation conditions   107

4.7.4. Effects of rain and snow     108

4.7.5. Effects of in situ leaching on waste rock         108

4.7.6. Designing for closure  109

4.8. Conclusions 109

4.9. Acknowledgements  110

4.10. Bibliography         110

Chapter 5. Models by Jean Biarez for the Behavior of Clean Sands and Remolded Clays at Large Strains 113
Jean-Louis FAVRE and Mahdia HATTAB

5.1. Introduction 113

5.2. Biarez’s model for the oedometer test  115

5.3. Perfect plasticity state and critical void ratio         118

5.4. Normally and overconsolidated isotropic loading  122

5.4.1. Analogy between sands and clays  122

5.4.2. Normally consolidated state (ISL)  123

5.4.3. Overconsolidated state (Cs)    124

5.5. The drained triaxial path for sands and clays         126

5.5.1. The reference behavior 126

5.5.2. The mathematical model    127

5.6. The undrained triaxial path for sands 128

5.6.1. Simplified Roscoe formula for undrained consolidated soils   129

5.6.2. Modeling of the maxima under the right M on the plan q – p'  130

5.7. Standard behavior for undrained sands 132

5.7.1. Normalization by the theoretical overconsolidation stress p'iC  132

5.7.2. Perfect plasticity normalization of the curves in the (q – ε1) plane and pore pressure variation        133

5.7.3. Initial stress p'0 normalization in the (q – p) plane      133

5.8. The triaxial behavior of “lumpy” sands    134

5.8.1. “Lump” sands        134

5.8.2. The Roscoe model applied to lump sands 135

5.8.3. Synthesis of several lump sand behaviors 136

5.9. A new model to analyze the oedometer’s path  138

5.9.1. Burland’s model       138

5.9.2. Comparison of models and mixed model         141

5.9.3. Burland’s model in (IL – logσ'v) Biarez’s space       144

5.10. “Destructuration” of clayey sediments 144

5.11. Conclusion   145

5.12. Examples of manuscript notes    147

5.13. Bibliography         149

Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153
Said TAIBI, Jean-Marie FLEUREAU, Sigit HADIWARDOYO, Hanène SOULI and António GOMES CORREIA

6.1. Introduction 153

6.2. Microstructural model for unsaturated porous media 160

6.3. Material and methods       164

6.3.1. Material and preparation of samples  164

6.3.2. Experimental devices and test procedures   165

6.3.3. Normalization of data 170

6.4. Experimental results  171

6.4.1. Isotropic compression paths   171

6.4.2. Deviatoric compression paths 72

6.4.3. Small strain behavior     173

6.5. Interpretation of results using the effective stress concept     174

6.5.1. Interpretation of large strain triaxial tests         175

6.5.2. Interpretation of small strain modulus measurements     176

6.6. Conclusions 177

6.7. Acknowledgements 178

6.8. Bibliography     178

Chapter 7. A Microstructural Model for Soils and Granular Materials  183
Pierre-Yves HICHER

7.1. Introduction 183

7.2. The micro-structural model     185

7.2.1. Inter-particle behavior    186

7.2.2. Stress−strain relationship 189

7.2.3. Model parameters      190

7.3. Results of numerical simulation on Hostun sand        191

7.3.1. Drained triaxial tests      191

7.3.2. Undrained triaxial tests     195

7.4. Model extension to clayey materials 196

7.4.1. Remolded clays   198

7.4.2. Natural clays    200

7.5. Unsaturated granular materials    204

7.6. Summary and conclusion     214

7.7. Bibliography       216

Chapter 8. Modeling Landslides with a Material Instability Criterion 221
Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and Félix DARVE

8.1. Introduction 221

8.2. Study of the second-order work criterion          223

8.2.1. Analytical study 223

8.2.2. Physical interpretation 227

8.3. Petacciato landslide modeling  229

8.3.1. Site presentation       229

8.3.2. Description of the model used   231

8.3.3. Landslide computation  234

8.4. Conclusion  238

8.5. Bibliography   240

Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions      243
Arezou MODARESSI-FARAHMAND-RAZAVI

9.1. Notations 243

9.2. Introduction 247

9.3. Modeling soil behavior 248

9.3.1. Main characteristics of the soil’s mechanical behavior    248

9.3.2. Constitutive models used for computation 253

9.3.3. Simplified model       254

9.3.4. Generalizing the simplified model  262

9.3.5. Mechanical behavior of non-saturated soil 265

9.3.6. Loading/unloading definition in plasticity 272

9.3.7. Multimechanism model     274

9.4. Parameter identification strategy for the ECP model   275

9.4.1. Classification and identification of the ECP model parameters 276

9.4.2. Directly measurable parameters 279

9.4.3. Parameters that are not directly measurable        288

9.4.4. Parameters defining the initial state 290

9.4.5. Application of parameter identification strategy      293

9.5. Influence of constitutive behavior on structural response 299

9.5.1. Retaining walls     299

9.5.2. Vertically loaded piles 304

9.5.3. Earth and rockfill dams     312

9.6. Conclusions 318

9.7. Acknowledgments       319

9.8. Appendix  319

9.9. Bibliography  323

Chapter 10. Evaluating Seismic Stability of Embankment Dams    333
Jean-Jacques FRY

10.1. Introduction 333

10.1.1. A tribute to Jean Biarez 333

10.1.2. Definitions    334

10.2. Observed seismic performance 335

10.2.1. Earthquake performance of gravity dams 335

10.2.2. Earthquake performance of buttress dams        336

10.2.3. Earthquake performance of arch dams     337

10.2.4. Earthquake performance of hydraulic fills        338

10.2.5. Earthquake performance of tailing dams  339

10.2.6. Earthquake performance of road embankments and levees   339

10.2.7. Earthquake performance of river hydroelectric embankments 339

10.2.8. Earthquake performance of small earth dams       340

10.2.9. Earthquake performance of large earth dams  342

10.2.10. Earthquake performance of large zoned dams with rockfill 344

10.2.11. Earthquake performance of concrete face rockfill dams 344

10.2.12. Dynamic performance of physical models       345

10.2.13. Assessment of seismic damage on dams 345

10.2.14. Major seismic damage of large concrete dams 346

10.2.15. Seismic damage of large embankment dams       347

10.2.16. Delayed or indirect consequences of an earthquake     347

10.3. Method for analyzing seismic risk 348

10.3.1. Seismic classification of dams in France 348

10.4. Evaluation of seismic hazard 350

10.4.1. Scenarios for dimensioning a particular situation      350

10.4.2. Choice of seismic levels 350

10.4.3. Choice of the seismic characteristics         351

10.4.4. Choice of accelerographs    352

10.5. Re-evaluation of seismic stability   355

10.5.1. Maximum risk associated with seismic loading: liquefaction 355

10.5.2. A recommended step-by-step methodology  357

10.5.3. Identification        357

10.5.4. Pseudo-static analysis of stability 358

10.5.5. Pseudo-static analysis of displacement         358

10.5.6. Analysis of the liquefaction risk  362

10.5.7. Coupled non-linear analysis 365

10.5.8. Analysis of post-seismic stability 367

10.5.9. Assessment  367

10.6. Semi-coupled modeling of liquefaction          368

10.6.1. Objectives  368

10.6.2. Constitutive model      368

10.6.3. Failure criterion       369

10.6.4. Shear strain law       370

10.6.5. Volumetric strain law: liquefaction          372

10.6.6. Model implementation     373

10.6.7. Model qualification in the case of the San Fernando Dam failure      373

10.6.8. Model application to fluvial dikes  380

10.7. Bibliography         387

List of Authors   393

Index 395

loading