An Introduction to Bioreactor Hydrodynamics and Gas-Liquid Mass Transfer
Buy Rights Online Buy Rights

Rights Contact Login For More Details

More About This Title An Introduction to Bioreactor Hydrodynamics and Gas-Liquid Mass Transfer

English

Reviews and compares the major types of bioreactors, defines their pros and cons, and identifies research needs and figures of merit that have yet to be addressed

  • Describes common modes of operation in bioreactors
  • Covers the three common bioreactor types, including stirred-tank bioreactors, bubble column bioreactors, and airlift bioreactors
  • Details less common bioreactors types, including fixed bed bioreactors and novel bioreactor designs
  • Discusses advantages and disadvantages of each bioreactor and provides a procedure for optimal bioreactor selection based on current process needs
  • Reviews the problems of bioreactor selection globally while considering all bioreactor options rather than concentrating on one specific bioreactor type

English

Enes Kadic completed his master’s degree in the Department of Mechanical Engineering at Iowa State University. His work involved extensive reviews of various bioreactors, which became the framework for this book.

Theodore J. Heindel is currently the Bergles Professor of Thermal Science in the Department of Mechanical Engineering at Iowa State University; he also holds a courtesy professor appointment in the Department of Chemical and Biological Engineering. He directs the Experimental Multiphase Flow Laboratory at ISU. Dr. Heindel’s research program has been funded by over 40 projects supported through the NSF, USDA, DOE, and industrial partners. He has published over 70 peer-reviewed papers and over 175 conference papers, abstracts, and technical reports.

English

1 INTRODUCTION 1

2 MODES OF OPERATION 3

2.1 Batch Bioreactors 3

2.2 Continuous Bioreactors 9

2.3 Summary 15

3 GAS-LIQUID MASS TRANSFER MODELS 17

4 EXPERIMENTAL MEASUREMENT TECHNIQUES 28

4.1 Measuring Bioreactor Hydrodynamic Characteristics 28

4.1.1 Flow regime measurements 29

4.1.2 Local pressure drop 30

4.1.3 Mixing or residence time 32

4.1.4 Axial diffusion coefficient 33

4.1.5 Gas-liquid interfacial area 34

4.1.6 Bubble size and velocity 35

4.1.7 Global and local liquid velocity 37

4.1.8 Gas holdup 40

4.1.8.1 Bed expansion 41

4.1.8.2 Pressure drop measurements 41

4.1.8.3 Dynamic gas disengagement (DGD) 46

4.1.8.4 Tomographic techniques 47

4.1.9 Liquid holdup 50

4.1.10 Power measurements 51

4.2 Gas-Liquid Mass Transfer 53

4.2.1 Dissolved oxygen measurement techniques 54

4.2.1.1 Chemical method 54

4.2.1.2 Volumetric method 56

4.2.1.3 Tubing method 56

4.2.1.4 Optode method 57

4.2.1.5 Electrochemical electrode method 58

4.2.1.5.1 Polarographic electrodes 59

4.2.1.5.2 Galvanic probes 61

4.2.1.5.3 Electrochemical electrode time constant 61

4.2.1.5.4 Electrochemical electrode response time (τe) 64

4.2.1.5.5 Electrochemical electrode response models 66

4.2.1.5.6 Summary of electrochemical electrode response models 72

4.2.2 Dissolved carbon monoxide measurements 72

4.2.2.1 Bioassay overview 74

4.2.2.2 Needed materials 75

4.2.2.3 Liquid sample collection 76

4.2.2.4 Identifying the concentrated myoglobin solution concentration 77

4.2.2.5 Sample preparation for analysis 78

4.2.2.6 Determining the dissolved CO concentration 79

4.2.3 Determining volumetric gas-liquid mass transfer coefficient, kLa 80

4.2.3.1 Gas balance method 81

4.2.3.2 Dynamic method 82

4.2.3.2.1 Biological dynamic method 82

4.2.3.2.2 Non-biological dynamic method 85

4.2.3.2.3 Variations of the inlet step change 86

4.2.3.2.4 Dynamic method drawbacks 91

4.2.3.3 Chemical sorption methods 92

4.2.3.3.1 Sulfite oxidation method 92

4.2.3.3.2 The hydrazine method 94

4.2.3.3.3 Peroxide method 95

4.2.3.3.4 Carbon dioxide absorption method 95

4.3 Summary 95

5 MODELING BIOREACTORS 97

5.1 Multiphase Flow CFD Modeling 97

5.1.1 Governing equations for gas-liquid flows 100

5.1.2 Turbulence modeling 101

5.1.3 Interfacial momentum exchange 104

5.1.4 Bubble pressure model 105

5.1.5 Bubble-induced turbulence 106

5.1.6 Modeling bubble size distribution 107

5.2 Biological Process Modeling 109

5.2.1 Simple bioprocess models 111

5.3 Summary 113

6 STIRRED TANK BIOREACTORS 114

6.1 Introduction 114

6.2 Stirred Tank Reactor Flow Regimes 116

6.2.1 Radial Flow Impellers 117

6.2.2 Axial Flow Impellers 122

6.3 Effects of Impeller Design and Arrangement 127

6.3.1 Radial Flow Impellers 129

6.3.2 Axial flow impellers 134

6.3.3 Multiple Impeller Systems 139

6.3.4 Surface Aeration 148

6.3.5 Self-Inducing Impellers 150

6.4 Superficial Gas Velocity 152

6.5 Power Input 155

6.6 Baffle Design 158

6.7 Sparger Design 161

6.7.1 Axial Flow Impellers 162

6.7.2 Radial Flow Impellers 164

6.8 Microbial Cultures 165

6.9 Correlation Forms 172

6.10 Summary 184

7 BUBBLE COLUMN BIOREACTORS 191

7.1 Introduction 191

7.2 Flow Regimes 194

7.3 Column Geometry 202

7.3.1 Column Diameter 202

7.3.2 Unaerated Liquid Height 205

7.3.3 Aspect Ratio 206

7.4 Other Operating Conditions 207

7.4.1 Pressure 207

7.4.2 Temperature 210

7.4.3 Viscosity 212

7.4.4 Surface Tension and Additives 213

7.5 Gas Distributor Design 215

7.6 Correlations 221

7.7 Needed Bubble Column Research 226

7.8 Summary 227

8 AIRLIFT BIOREACTORS 243

8.1 Introduction 243

8.2 Circulation Regimes 247

8.3 Configuration 253

8.3.1 Bioreactor Height 255

8.3.2 Area Ratio 258

8.3.3 Gas Separator 261

8.3.4 Internal-Loop Airlift Bioreactor 266

8.3.5 External-Loop Airlift Bioreactor 268

8.4 Sparger Design 272

8.5 Correlations 277

8.6 Needed Research 280

8.7 Summary 284

9 FIXED BED BIOREACTORS 295

9.1 Introduction 295

9.2 Column Geometry and Components 299

9.3 Flow Regime 307

9.4 Liquid Properties 314

9.5 Packing Material 316

9.5.1 Random Packing 319

9.5.2 Structured Packing 321

9.6 Biological Considerations 324

9.7 Correlations 325

9.8 Needed Research 327

9.9 Summary 328

10 NOVEL BIOREACTORS 333

10.1 Introduction 333

10.2 Novel Bubble-Induced Flow Designs 333

10.3 Miniaturized Bioreactors 341

10.3.1 Microreactors 343

10.3.2 Nanoreactors 348

10.4 Membrane Reactor 349

10.5 Summary 353

11 FIGURES OF MERIT 355

12 CONCLUDING REMARKS 363

13 NOMENCLATURE 367

Abbreviations 375

Greek Symbols 377

Dimensionless numbers 379

14 BIBLIOGRAPHY 382

loading